Early sensory and hormonal experience modulate age-related changes in NR2B mRNA within a forebrain region controlling avian vocal learning.
نویسندگان
چکیده
Male zebra finches are most apt to mimic songs heard between posthatch days (PHD) 35 and 65, and this vocal learning depends, in part, on the activation of N-methyl-D-aspartate receptors (NMDAR) within a discrete forebrain circuit that includes the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and area X. Using in situ hybridization, we show that transcripts for both the constitutive NMDAR subunit NR1 and the modulatory subunit NR2B decrease abruptly in the lMAN between PHD20 and 40. This downregulation corresponds to the onset of song learning and a transition from slow to faster NMDAR currents in lMAN neurons. In area X, NR1 mRNA increases as NR2B mRNA decreases during song development. To understand how these changes in NMDAR mRNA might regulate song learning, we next investigated how manipulations that influence song development affect NMDAR mRNA expression. Early isolation from conspecific song (which delays closure of the sensitive period for song learning) selectively increases NR2B, but not NR1 mRNA, within lMAN at PHD60. In contrast, exposure to testosterone beginning at PHD20 (which impairs song development and hastens the developmental transition to faster NMDAR current kinetics within lMAN) accelerates the decline in NR2B mRNA in lMAN, again without affecting NR1 transcript levels. Neither manipulation significantly effects NR1 or NR2B mRNA levels in area X. Our data suggest that developmental changes in the expression of specific NMDAR subunits may regulate periods of neural and behavioral plasticity and that flexibility in the timing of these sensitive periods may be achieved through experience and/or hormone-dependent modulation of NMDAR gene expression.
منابع مشابه
Developmental and hormonal regulation of NR2A mRNA in forebrain regions controlling avian vocal learning.
Developmental changes in the composition of NMDA receptors can alter receptor physiology as well as intracellular signal transduction cascades, potentially shifting thresholds for neural and behavioral plasticity. During song learning in zebra finches, NMDAR currents become faster, and transcripts for the modulatory NR2B subunit of this receptor decrease in lMAN, a region in which NMDAR activat...
متن کاملNR2B downregulation in a forebrain region required for avian vocal learning is not sufficient to close the sensitive period for song learning.
The neural changes that limit the sensitive period for avian song development are unknown, but neurons in a forebrain region critical for song learning, the lMAN, exhibit experience-driven changes in NMDAR subunit expression that could regulate sensitive period closure. Specifically, NR2B levels in lMAN decrease during song acquisition, potentially reducing synaptic plasticity by decreasing NMD...
متن کاملDevelopmental regulation of NMDA receptor 2B subunit mRNA and ifenprodil binding in the zebra finch anterior forebrain.
In passerine songbirds, song learning often is restricted to an early sensitive period and requires the participation of several discrete regions within the anterior forebrain. Activation of N-methyl-D-aspartate (NMDA) receptors is implicated in song learning and in one forebrain song region, the lateral magnocellular nucleus of the anterior neostriatum (IMAN), NMDA receptors decrease in densit...
متن کاملDevelopmental patterns of NMDAR expression within the song system do not recur during adult vocal plasticity in zebra finches.
All songbirds learn to sing during postnatal development but then display species differences in the capacity to learn song in adulthood. While the mechanisms that regulate avian vocal plasticity are not well characterized, one contributing factor may be the composition of N-methyl-D-aspartate receptors (NMDAR). Previous studies of an anterior forebrain pathway implicated in vocal plasticity re...
متن کاملThe emotive brain, the noradrenergic system, and cognition
Motivation and attention can have a profound influence on perception, learning and memory. Neuromodulatory systems, especially the noradrenergic (NE) system, co-vary with psychological states to modulate cortical arousal, influence sensory processing and promote synaptic plasticity. There is even some suggestion that the NE system might facilitate functional recovery after brain damage. Post-sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurobiology
دوره 44 1 شماره
صفحات -
تاریخ انتشار 2000